Mapping Spartina alterniflora Biomass Using LiDAR and Hyperspectral Data
نویسندگان
چکیده
Large-scale coastal reclamation has caused significant changes in Spartina alterniflora (S. alterniflora) distribution in coastal regions of China. However, few studies have focused on estimation of the wetland vegetation biomass, especially of S. alterniflora, in coastal regions using LiDAR and hyperspectral data. In this study, the applicability of LiDAR and hypersectral data for estimating S. alterniflora biomass and mapping its distribution in coastal regions of China was explored to attempt problems of wetland vegetation biomass estimation caused by different vegetation types and different canopy height. Results showed that the highest correlation coefficient with S. alterniflora biomass was vegetation canopy height (0.817), followed by Normalized Difference Vegetation Index (NDVI) (0.635), Atmospherically Resistant Vegetation Index (ARVI) (0.631), Visible Atmospherically Resistant Index (VARI) (0.599), and Ratio Vegetation Index (RVI) (0.520). A multivariate linear estimation model of S. alterniflora biomass using a variable backward elimination method was developed with R squared coefficient of 0.902 and the residual predictive deviation (RPD) of 2.62. The model accuracy of S. alterniflora biomass was higher than that of wetland vegetation for mixed vegetation types because it improved the estimation accuracy caused by differences in spectral features and canopy heights of different kinds of wetland vegetation. The result indicated that estimated S. alterniflora biomass was in agreement with the field survey result. Owing to its basis in the fusion of LiDAR data and hyperspectral data, the proposed method provides an advantage for S. alterniflora mapping. The integration of high spatial resolution hyperspectral imagery and LiDAR data derived canopy height had significantly improved the accuracy of mapping S. alterniflora biomass.
منابع مشابه
Examination of Abiotic Drivers and Their Influence on Spartina alterniflora Biomass over a Twenty-Eight Year Period Using Landsat 5 TM Satellite Imagery of the Central Georgia Coast
We examined the influence of abiotic drivers on inter-annual and phenological patterns of aboveground biomass for Marsh Cordgrass, Spartina alterniflora, on the Central Georgia Coast. The linkages between drivers and plant response via soil edaphic factors are captured in our graphical conceptual model. We used geospatial techniques to scale up in situ measurements of aboveground S. alterniflor...
متن کاملA Generic Modeling Approach to Biomass Dynamics of Sagittaria latifolia and Spartina alterniflora
explore relationships between species of emergent aquatic vegetation communities and their environmental conditions. The modeling approach was used to evaluate the potential persistence of two desired — and quantitatively important — rhizomatous plant species under various climatological conditions: Sagittaria latifolia, common in freshwater systems, can produce tubers as well as rhizomes; Spar...
متن کاملUrban Vegetation Recognition Based on the Decision Level Fusion of Hyperspectral and Lidar Data
Introduction: Information about vegetation cover and their health has always been interesting to ecologists due to its importance in terms of habitat, energy production and other important characteristics of plants on the earth planet. Nowadays, developments in remote sensing technologies caused more remotely sensed data accessible to researchers. The combination of these data improves the obje...
متن کاملEstimating the Biomass of Maize with Hyperspectral and LiDAR Data
The accurate estimation of crop biomass during the growing season is very important for crop growth monitoring and yield estimation. The objective of this paper was to explore the potential of hyperspectral and light detection and ranging (LiDAR) data for better estimation of the biomass of maize. First, we investigated the relationship between field-observed biomass with each metric, including...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 9 شماره
صفحات -
تاریخ انتشار 2017